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Rotating flow over shallow topographies 
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The flow of a rotating homogeneous incompressible fluid over various shallow 
topographies is investigated. In  the physical system considered, the rotation 
axis is vertical while the topography and its mirror image are located on the 
lower and upper of two horizontal plane surfaces. Upstream of the topographies 
and outside the Ekman layers on the bounding planes the fluid is in a uniform 
free-stream motion. An analysis is considered in which E Q 1, Ro N Ei,  H / D  N EO, 
and h/D N E*7 where E is the Ekman number, Ro the Rossby number, HID the 
fluid depth to topography width ratio and h/D the topography height-to-width 
ratio. The governing equation for the lowest-order interior motion is obtained 
by matching an interior geostrophic region with Ekman boundary layers along 
the confining surfaces. The equation includes contributions from the non-linear 
inertial, Ekman suction, and topographic effects. An analytical solution for a 
cosine-squared topography is given for the case in which the inertial terms are 
negligible; i.e. Ro 4 E4. Numerical solutions for the non-linear equations are 
generated for both cosine-squared and conical topographies. Laboratory ex- 
periments are presented which are in good agreement with the theory advanced. 

1. Introduction 
Since the time of Taylor’s (1923) experiments a great deal of effort has been 

expended in investigating the effects of bottom topography on flows in rotating 
frames of reference. Unfortunately most of the theoretical studies are so re- 
strictive as to make experimentation difficult, if not impossible, while for many 
of the experimental studies the theory is intractable. The present investigation 
is one for which both the range of applicability of the theory and the capabilities 
of the laboratory experiment coincide. 

The physical system to be considered is sketched in figure 1. Identical topo- 
graphies are mounted in symmetrical pairs on the upper and lower of two infinite 
horizontal plane surfaces. The region between the bounding surfaces is filled with 
a homogeneous incompressible fluid and the entire system rotates with a constant 
angular velocity, G7 about a vertical axis. Upstream of the topographies and 
outside the Ekman layers on the horizontal surfaces the fluid is in a uniform 
rectilinear motion. The resulting flow field is to be examined. 

Jacobs (1964), in a theoretical study, investigated a system similar to that 
given in figure 1; i.e. he considered only the topography on the lower surface. 
His analysis is restricted geometrically to obstacles of revolution whose slopes, 
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as characterized by h/D, are of order unity everywhere. He obtains a solution 
in which the motion in the interior of a cylinder circumscribing the obstacle is 
stagnant while that in the exterior is the classical two-dimensional irrotational 
flow past a solid cylinder. Vertical shear layers provide the smooth transition 
between these regions. The analysis neglects inertial effects and as such is very 
restrictive in that it requires E 4 1 and Ro < E3, where E and Ro are the Ekman 
and Rossby numbers respectively. 

C‘(1) 

T 

B 

Plan 

Profile 

FIGURE 1. The physical system. Quantities in parenthesis are dimensionless. 

In  another recent analytical study, Ingersoll (1969), using Jacobs’ geo- 
metry, considered the parameter restrictions E4 < Ro < 1 and h/D N Ro; i.e. 
the analysis, while including inertial effects, neglects viscosity. His analysis 
predicts, for example, that stagnant columns should occur above right circular 
cylindrical obstacles whenever h/D > 2Ro. These columns are ‘partial columns ’ 
in the sense that they do not circumscribe the entire obstacle. They occur off- 
centre (i.e. to the right, facing downstream) for the flow and rotation directions 
indicated in figure 1. Ingersoll’s analysis also predicts a circulation around the 
column which has the opposite sense to that of the basic rotation. The upstream 
and downstream flow patterns he obtains are mirror images. 

Moore & Saffman (1969) considered the motion of a thin disk through a rotating 
fluid. Their analysis, which requires E < 1, Ro < Ei and h/D 4 E*, and thus 
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neglects inertial effects, shows that the flow field consists of two geostrophic 
regions separated by free shear layers in the vicinity of a cylinder circumscribing 
the disk. The indeterminateness of the geostrophic regions is removed by the 
constraints imposed by the vertical shear layers. They find that the fluid veers 
to the right, facing downstream, as it passes over the disk. No stagnant flow 
regions are obtained. 

Hide & Ibbetson (1966) and Hide, Ibbetson & Lighthill (1968) performed 
various laboratory experiments concerning topography effects on rotating flows. 
In the former study obstacles were towed through a rotating fluid, i.e. the Taylor 
experiment. In  the latter, a vortex flow was induced in a rotating circular tank 
by introducing the fluid along the centre-line and removing it along the periphery. 
The obstacles were then placed in the flow (i.e. fixed with respect to a rotating 
observer) and the resulting motion was examined. 

The present study will employ the rotating water-tunnel described recently 
by one of us (Boyer 1971 a). The tunnel can provide a uniform flow with respect 
to a rotating observer and thus can be used for an experimental investigation 
of the physical system under consideration (figure 1). To date (Boyer 1970, 
1971a, b )  the tunnel has been utilized to investigate the flow past right circular 
cylinders (extending through the depth of the channel), long ridges (e.g. of 
triangular cross-section) and a long step (i.e. a ridge of rectangular cross- 
section), respectively. The cylinder study is purely experimental while the latter 
investigations are accompanied by theory. The analysis in the ridge and step 
studies is restricted by the following: 

E 4 1, RO - E), h/D N Eh, HID - E", (1.1) 

where h/D and HID are the geometrical parameters defined in figure 1. 
In  the ridge analysis the topography is assumed to be infinitely long and to 

have an infinitesimal (i.e. O(E4)) slope everywhere. Thus under conditions (1.1) 
the resulting flow field is shown to consist of an interior geostrophic region and 
Ekman layers along the bounding surfaces. While (1.1) ensures that the inertial 
terms are important, non-linear difficulties do not arise since the two-dimensional 
aspects of the problem lead to a linearization of these terms. In  the step analysis 
it is shown that free shear layers occur in the vicinity of vertical planes defined 
by the infinite slope portions of the topography. Since again, however, the 
topography is assumed to be infinitely long, the problem reduces to a tractable 
one analytically. 

It is the purpose of the present study to investigate the flow over shallow 
topographies which are finite in extent (e.g. cones) and whose slopes are in- 
finitesimal (O(E4)) everywhere. Topographies, such as disks, which would be 
accompanied by free vertical shear layers are not considered. Restrictions (1.1) 
are retained and thus the problem posed is general, in the sense that the inertial, 
Coriolis, topographic, and viscous effects are all important in determining the 
lowest-order motion. It is recognized at the outset that the non-linear inertial 
terms must be considered in the analysis. As such, solutions are obtained using 
numerical techniques. The experimental objective is to generate laboratory flows 
which can be compared with some of the numerical results. 

6 F L M  50  
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2. Formulation 
The dimensionless equations of motion for a homogeneous incompressible 

fluid relative to a rectangular Cartesian co-ordinate system x(x, y ,  z )  = x*/D 
rotating at  a constant angular velocity wk with respect to an inertial frame are 

Ro[v,+ (v .  V) vl = -V@ - k x v + EV2v, (2 .1 )  

where D is the characteristic horizontal dimension of the topography, 
Ro = U / 2 w D  the Rossby number, U the free-stream speed, v(u, v, w) = v*/U the 
Eulerian velocity, t = t* U / D  the time, @ = ( - & t ~ ~ c ~  +p/p + $ ) / 2 w U D ,  c the dis- 
tance from the axis of rotation, p the pressure, p the density, @ the gravitational 
potential, E = v/2(~tD2 the Ekman number, and v the kinematic viscosity. The 
asterisks refer to dimensional quantities. The equation for conservation of mass 
is given by 

v .v  = 0. (2 .2)  

We apply no-slip boundary conditions on the confining surfaces and require 
that the flow outside of the Ekman layers is uniform far upstream and at large 
lateral distances from the topography. Far downstream we require the stream- 
lines to be parallel to their upstream directions. 

From (2 .1)  and (2 .2 )  and the attendant boundary conditions for the symmetric 
system being considered it is clear that u, v and @ are even in the vertical co- 
ordinate, x ,  while w is odd in x .  We thus need consider only the region z < 0. 

The problem posed is a four-parameter one including Ro and E ,  which appear 
in the governing equations, and h/D and HID, defined in figure 1, which enter 
through the boundary conditions. The general problem is intractable analytically 
and one is thus led to make simplifying approximations. 

We consider the followingapriori assumptions: (i) E @ 1;  (ii) Ro = kE*, where 
k is of order unity; (iii) HID N EO, i.e. of order unity; (iv) h/D N E8, let the bottom 
topography be given by 

x = - H / D  + E*ho(x, y ) ,  where h,(x, y )  = E-*h(x, y ) / D  N Eo; 

(v) hoz N EO, h,, - EO, i.e. the topography slope is infinitesimal everywhere. 
These asaumptions ensure that inertial, Coriolis, topographic and viscous effects 
will all be important in the determination of the lowest-order motion. 

Since the formulation here is similar to that discussed by both Ingersoll(l969) 
and Boyer (1971 a ) ,  a detailed derivation of the simplified governing equations 
will be omitted. For details of this derivation or of other portions of this paper, 
the reader is referred to Vaziri (1971) .  Very briefly, however, under restrictions 
(i) to (v) the flow field can be divided into an interior geostrophic region and 
Ekman layers along the bounding surfaces. In  each of these regions the dependent 
variables can be expanded in power series in E4. 

The zeroth-order motion (i.e. of order unity) in the interior is geostrophic and 
horizontal. It is not possible, however, to determine the geostrophic flow field 
unless the first-order (i.e. O(E*)) interior terms are also considered. The first- 
order equations provide a relation between the lowest-order non-zero vertical 
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velocity component, W,, (i.e. O(E4)) and the zeroth-order horizontal motion 
One obtains, to lowest order, 

w, = kz{& + J(4, C)} E*, (2.3) 

where ,$ is the vertical component of relative vorticity and $ is the stream func- 
tion. Here 4 is defined by U, = -$v and V, = @x, where U,, V, are the zeroth- 
order horizontal interior velocity components. The stream function and relative 
vorticity are related by the Poisson equation 

vzp = 6. (2.4) 

It should be noted that steady solutions are sought, but because of the numerical 
techniques employed, the unsteady terms have been retained. 

From an analysis of the Ekman layers, the leading-order vertical velocity 
component WE, evaluated at the outer edges of the boundary layers, is given by 

Matching the interior (2.3) and the Ekman layers (2.5) along the lower boundary, 
z = -HID to lowest order, yields 

W I D )  {6t + JW,  E ) }  + 2-46 + 44, fL,) = 0, (2.6) 

where terms of O(E4) (or O(Ro)) have been neglected. Equations (2.4) and (2.6) 
are to be solved for the interior values of $ and $. 

Relation (2.6) is a transport equation for the relative vorticity. The terms in 
(2.6) are respectively the unsteady, advection, Ekman suction (pumping) and 
topographical contributions. The boundary conditions require 

(2.7a, b, c) 

In  order to obtain solutions the topography is specified in a region R as 
projected on the x, y plane (figure 1). In  the region T, outside R, the bounding 
planes are horizontal and hence the topography terms are identically zero. Let 
the boundary between R and T be specified as B. In  obtaining solutions one solves 
(2.4) and (2.6) in R and T and matches the solutions along B. The matching 
requires that both the velocity and shear stress be continuous. 

For topographies with continuous slopes everywhere no apparent difficulties 
will arise since the problem, as formulated, will yield lowest-order interior and 
Ekman layer solutions which are continuous and which satisfy the requisite 
boundary conditions. Special care must be exercised, however, when the topo- 
graphy in question has discontinuities in slope. Consider, for example, a 
topography for which there is a slope discontinuity along B (e.g. a cone). It is 
clear from (2.4) and (2.6) and the stated continuity conditions on the velocity 
and shear stress that en,,,, will, in general, not be continuous across B; here n is 
the derivative taken normal to B. From (2.3), discontinuities in $-,,, imply 
discontinuities in the lowest-order interior vertical velocity component. Thus 
while the zeroth-order horizontal velocity components will be continuous, the 
vertical component will be discontinuous along B.  

6-2 
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Consider a hypothetical ‘smoothing process ’ in which the topography slope 
is made continuous over a horizontal distance of O(EA) normal to B. We restrict 
to h < 4 so that the first-order z-momentum equation is hydrostatic as required 
in the derivation of (2 .6) .  If we further require h > 0, the lowest-order horizontal 
motion, as determined from (2 .4)  and (2 .6 ) ,  for the smoothed and the discon- 
tinuous slope topographies will be identical since the smoothing has not altered 
the lowest-order topography. Such a smoothing thus provides a continuous 
lowest-order vertical velocity field without altering the lowest-order horizontal 
motion. Since we are interested mainly in the horizontal velocity field, the 
details of the smoothing process need not be considered. 

In  the next section the non-linear advection terms are neglected and a solution 
for the resulting linear problem is sought. Under these conditions it is not possible 
to obtain horizontal flow fields for which both the velocity and shear stress are 
continuous unless one restricts to topographies with continuous slopes every- 
where. If the inertial terms are neglected a discontinuity in slope would pre- 
sumably be accompanied by verticaI shear layers. Since we do not wish to address 
such layers in the present paper, we restrict to topographies with continuous 
slopes in considering the linear problem. 

3. Linear problem 
In order to emphasize the importance of non-linear effects, the linear problem 

will first be investigated. We omit the unsteady term in (2 .6)  and also assume 
that the inertial terms are negligible; i.e. Ro < Eg. Combining (2 .4)  and (2 .6 ) ,  
the governing equation for $ in polar co-ordinates is thus given by 

V2$ + (2’/r) ($rho@- $ohor) = 0. (3 .1 )  

Consider as an example a cosine-squared topography defined by 

where h/D - O(E4) is the dimensionless amplitude. Both the topography and 
its slope are continuous throughout the entire domain. From (3 .1 )  and (3 .2)  the 
equations for the stream function in regions R and T are given by 

Vz$R = - 2%nEB(h/D) ( l / r )  sinnr cos nr (3 .3 )  

and v2$T = 0, (3 .4 )  

respectively. The boundary conditions require 

The solution of (3 .3 )  and (3 .4 )  subject to (3 .5 )  is straightforward but lengthy. 
The series solution of (3 .4 )  is standard while that of (3 .3 )  is obtained by the method 
of Frobenius. The details of the solution are given in Vaziri (1971) and will not 
be repeated here. 
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A typical streamline pattern is shown in figure 2. In  this and all subsequent 
figures the flow is from left to right, the rotation is counterclockwise, and the 
topography is indicated by dashed lines. One of the apparent features of the flow 
is its symmetry in the sense that $(T,  0) = -$(r,B+?r).  Note also that the 
characteristic speed near the central portion of the topography is relatively 
small as indicated by the large separation distance between streamlines. 

2.0 

I .o 

0.0 

-1.0 

- 2.0 
- 3.0 - 2.0 - 1.0 0.0 2.0 3.0 

FIGURE 2 .  Streamline patterns for a cosine-squared topography, E = 2.6 x and 
h/D = 6.25 x Here and in all streamline patterns to follow, the flow is from left to 
right, the rotation is counterclockwise and the increment between adjacent streamlines 
is 0.2. 

4. Non-linear problem - numerical techniques 
Stea,dy-state solutions for $ and for (2.4) and (2.6) subject to the boundary 

conditions (2.7) can be obtained numerically using a procedure similar to that 
given in a classical paper by Charney, Fjortoft & von Neumann (1950) and 
used extensively in numerical treatments of oceanographical and meteorological 
problems. The integration is performed in a rectangular domain X, Y sketched 
in figure 3. Let the domain be subdivided into a network of H, N grid points in 
the z and y directions, respectively. For convenience the grid interval d is chosen 
the same size in both directions, i.e. 

X Y 
M - 1 - = '  

a=-- 

The time increment is At, so that t = nht, where n = 0,1,2, ... . 
We define the value of $(z, y, t )  at the grid point (i, j) and time nAt as $&. 
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Derivatives are written in finite difference form using a centred difference 
scheme, i.e. 

N 

$= -Y 
E = O  

t 
i 

1 

3y 

-t t.y 

I v 

1 i -  $=)Y,  E=O 

FIGTJRE 3. Integration domain and boundary conditions for the numericaliccslcukttions. 

With these definitions, the finite difference analogues of (2.6) and (2.4) can be 
written as 

(l/d2) (@?+l,j +@?-I, j + $2 j+1+ $; j-1- WZ j) = Cz j, (4.2) 

respectively, where the Ekman suction term, a[, has been approximated by 
Bu(@$l+ [;?1), and J(En, $m) is the finite difference form of the Jacobian due to 
Arakawa (1966). The Jacobian and topography terms are evaluated at  the central 
time level n. Predicted values of vorticity CzF are obtained a t  time level n + 1 
according to (4.1). The stream-function field @zj is determined from a solution 
of the Poisson equation (4.2). The truncation errors in (4.1) and (4.2) are O(d2) 
or O(At2). At t = 0 the flow is assumed to be uniform throughout the domain 
and, from (4.2), the vorticity is thus zero everywhere, i.e. 

$(t = 0 )  = - y, ((t = 0) = 0. 
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At t > 0 the boundary conditions on 4 are given by (2.7). In order to solve the 
prediction equation (4.1) boundary conditions on vorticity must also be specified. 
By combining the Poisson equation (4.2) with (2.7a, b )  the boundary conditions 
on the vorticity for the inflow and two lateral boundaries are given by 

[(2 = -4X) = 0, C(y = f. BY) = 0, 

respectively. On the outflow boundary, 2 = QX, the stream function is unknown 
and the vorticity may be determined from the interior values through a simple 
extrapolation proposed by Charney et al., i.e. 

E(2 = &X-d) -&(x  = BX-24 = [(x = * X ) - [ ( z  = *X-d) .  

The scheme used for the numerical integration of (4.1) and (4.2) is now standard. 
The complete algorithm consists of predicting vorticity (211 according to (4.1), 
except for an initial forward time step. Knowing the vorticity distribution, the 
Poisson equation (4.2) is then solved for the stream function. The procedure is 
repeated until the solutions converge, e.g. they satisfy the relation 

where m is an even number and E is an acceptable tolerance. 
One of the serious questions to be considered in any numerical integration is 

that of stability. There is a great deal of analytical and numerical work in the 
literature concerned with the stability properties of various time and space 
differencing techniques. These fundamentals will not be discussed here. Instead, 
the methods employed to neutralize possible computational instabilities are 
briefly reviewed. For a more detailed discussion, see Williams (1969). 

The advection process has a well-known partial instability (see, for example, 
Richtmyer & Morton 1957, Forsythe & Wasow 1960) which can be suppressed 
by realizing the Courant-Friedrichs-Lewy criterion that the time step be limited 
to At =g d/29 max (V$). 

The limitation on the time step alone does not ensure the stability of the 
non-linear equation (4.1) and computations may eventually become unstable 
due to ‘aliasing errors’ (Phillips 1959). This instability arises after numerous 
time steps and is caused by the misrepresentation of the shorter waves due to 
the inability of the finite grid size to properly resolve them. Arakawa (1966) has 
shown, however, that the non-linear instability can be avoided by proper space 
differencing of the Jacobian. Using Arakawa’s Jacobian, which conserves some 
of the physical quantities of the flow (i.e. the mean kinetic energy $(V$)z, mean- 
square vorticity F, and the mean vorticity c, of the system), the aliasing errors 
may be controlled and the non-linear instability does not occur. 

The weak instability associated with the centred time differencing of the 
unsteady term a&/at is usually referred to as ‘time splitting’, e.g. Lilly (1965). 
This is caused by the fact that a first-order continuous equation, such as (2.6), 
has been raised to a second-order difference equation, (4.1), involving three 
time levels. As computations proceed in time, two modes of solutions develop: 
one associated with the physical solution and one a purely ‘computational mode’ 
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arising from the method of time integration (Platzman 1954). If the weak in- 
stability can be kept small, the centred time differencing, being an accurate one, 
is desirable. The weak instabilities can be kept small by periodically taking a 
forward time step in the calculations and then continuing the integration with 
the centred time differencing, (4.1). 

The instability of the Ekman suction term a<, in a vorticity equation of the 
form & = a<, has been examined by Miyakoda (1962). With a > 0 and centred 
time differencing, the scheme is unstable if 6 is evaluated at  the central time 
level n. A stable scheme is obtained, however, if 5 is approximated by its average 
value a t  the non-centred time levels, i.e. g = (Eztl+ &1)/2At. 

The instability properties of the topographical terms are not considered here 
since these terms are identically zero over the major part of the domain. 

At every time step the Poisson equation (4.2) has to be solved for the stream 
function 9. While there are numerous solution techniques available, care must 
be taken to choose a method which is both accurate and relatively rapid. The 
fastest iterative method presently available for a rectangular domain and subject 
to mixed boundary conditions is the alternating-direction implicit (ADI) method 
which is described in detail by Varga (1962) and Wachspress (1966). Using the 
AD1 scheme, the Poisson equation can be solved very accurately in an average 
of less than 1 sec on a CDC 6600 machine for a 61 x 41 rectangular domain with 
mixed boundary conditions (2.7). 

5. Numerical results 
We first obtain solutions for the cosine-squared topography d e h e d  by (3.2). 

The parameters E and h/D are taken to be the same as those used in obtaining 
the flow pattern for the linear problem (figure 2 )  while Ro is now made h i t e .  
The resulting streamline and vorticity fields are given in figures 4 (a)  and 4 ( b )  
respectively. As should be expected, the symmetry of the flow pattern as noted 
in the zero Rossby number calculation (figure 2) is destroyed when Ro is non- 
zero, figure 4(a). One also notes, in comparing figures 2 and 4 (a),  that the charac- 
teristic speed over the topography is much larger when the Rossby number is 
finite. The streamlines near the centre of the domain in the non-linear flow ex- 
perience a net shift to the right, facing downstream, of their upstream positions. 
This can be observed by tracing a streamline from the inflow to the outflow 
boundaries. Such a shift is absent in the linear solution. 

The corresponding vorticity distribution is shown in figure 4(b). The most 
apparent characteristics of the vorticity distribution are the two cells of opposing 
signs located in the vicinity of the obstacle. The negative cell appears near the 
centre of the topography while the positive one is off-centre further downstream. 
The contours corresponding to = 0 have been suppressed for clarity. Since the 
vorticity is proportional to the Ekman suction velocity, there is a suction of 
fluid into the Ekman layers in the negative cell and a pumping into the interior 
in the positive one. We recall that this suction and pumping imply a downward 
and upward motion respectively throughout the interior in these regions. Note 
also that the vorticity is advected downstream in an asymmetric fashion. 
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(a) 

FIGURE 4. (a) Streamline patterns for a cosine-squared topography, E = 2.6 x 10-4, 
Ro = 1.8 x 10-2, HID = 0.375 and h/D = 6.25 x loM2. ( b )  Vorticitydistribution; thecontour 
interval is 0.7 and the zero contour lines have been suppressed for clarity. 
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Because of the difficulties inherent in fabricating topographies as complex as 
the cosine-squared one, most of the numerical runs were made for a conical 
topography defined by 

where h/D is the dimensionless height of the cone. 

2 0  2.0 

I .o 1 .O 

00 0.0 

- 1.0 - 1.0 

-2 n - 3.n 

, I  

2.0 2.0 

1 .O 1 .O 

0.0 0.0 

-1.0 - 1.0 

-2.0 - 2.n - -  ~. 
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0. -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 

(c) ~ o = i . o x  10-3 (d)  RO= 1.0 x 10-4 

FIGURE 5. Streamline patterns for a conical topography at  fixed E, HID and hlD, and varying 
Ro. E = 1-0 x HID = 0-375 and hlD = 6.25 x 

Before comparing some of these runs with experiment, we intend to demon- 
strate how parameter variations alter the resulting flow field. We first note that 
while the general problem posed is a four-parameter one, the horizontal motion 
in the simplifiedproblem, asdefinedby (2.4) and (2.6) and theattendant boundary 
conditions (2.7), is characterized by only two parameters, i.e. RoE-)(H/D) and 
E-)h/D. In  the following, however, we will examine the behaviour of the 
horizontal flow field under variations in Ro, E and h/D, since these are the 
parameters usually varied in the laboratory; HID = 0.375 is not varied. Three 
sets of streamline patterns are presented. In  each of these sets one of the para- 
meters Ro, E and h/D is varied while the remaining ones are held fixed. Note 
that variations in Ro for fixed E and h/D could also be considered as a variation 
in HID for fixed Ro, E and h/D. 

The streamline patterns for various Ro and fixed E andh/D are shown in figure 5. 
The most apparent characteristic of decreasing Ro is that of increased streamline 
deflexions above the obstacle. It is also clear that the characteristic fluid velocities 
above the cone decrease with decreasing Ro. Finally, note that as Ro is made 
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smaller, the flow patterns become more symmetrical in the sense of the linear 
problem as exemplified by figure 2. This should be expected since the inertial 
effects become less important as Ro is decreased. 

Streamline patterns for various Ekman numbers and fixed Ro and h /D are 
given in figure 6. The most striking feature of this series is the development of 
a bound eddy as the Ekman number is decreased. The eddy is a volume of fluid 
with a low characteristic speed and is not penetrated by the interior flow. Note 
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(b) E= 1.0 x 10-4 
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FIQTJRE 6. Streamline patterns for a conical topography at  fixed Ro, HID and hlD, and 
varying E. Ro = 1.0 x lo-?-, HID = 0.375 and h/D = 6.25 x lo-?-. 

that in figure 6 (d), Ingersoll's inviscid assumption, Ro 9 E4, is closely approxi- 
mated. The gross features of'the flow are quite similar to those he obtained even 
though his computation was for a right circular cylindrical obstacle. Note that 
the fluid velocities above and on the left-hand side of the cone, facing downstream, 
are larger than those in the free stream. 

Flow fields for increasing cone height h/D and fixed Ro and E are shown in 
figure 7. Note that the larger h/D runs do not rigorously satisfy the assumption 
of h/D N Et. Experimental studies, presented below, suggest that the theory, 
although derived for infinitesimal topographies, can be utilized to a good approxi- 
mation for finite ones as well. 

As seen in figure 7, the general result of increasing h/D is to produce larger 
streamline deflexions and smaller characteristic fluid velocities above the cone. 
Note that the $? = 0 streamline in figure 7(c) 'curls' through 315' over the 
cone before continuing downstream. In  figure 7 ( d )  the apexes of the cones on 
the top and bottom planes 'just touch'. In  this case another bound eddy occurs. 
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In contrast to those in figure 6, however, this one occurs on the left-hand side of 
the cone facing downstream. The kinks in the streamlines in figures 7 (c) and (d)  
are due to the relatively large grid size used in the computations. 
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( d )  h/D = 0.375 

FIGURE 7.  Streamline patterns for a conical topography at  fixed Ro, E and HID, and varying 
hlD; Ro = 0.6 x E = 0.8 x lo-* and HID = 0.375. 

6. Experimental studies 
The numerical results can be compared with experiment by utilizing the 

rotating water-tunnel apparatus discussed in some detail by Boyer (1971~1,). 
Very briefly, the tunnel is a channel of rectangular cross-section (1  15 cm long, 
35cm wide and 3.8cm deep). Water is pumped through the channel and the 
entire system rotates counterclockwise at  a constant angular velocity about a 
vertical axis. By properly adjusting the entrance and exit conditions, the tunnel 
can provide a test section flow which is uniform outside the Ekman layers on 
the horizontal plane surfaces. 

The uniform flow is at a slight angle (i.e. a few degrees), 8, to the right of the 
channel axis as one faces downstream. This angle can be computed by balancing 
the Ekman transport with the cross-channel interior flow. One obtains 

tan0 = (1/2H) ( Y / w ) ~ .  

Within experimental error this relation is satisfied in the laboratory. 
The experiments in the present study are to investigate the interior geostrophic 

region. A tracer is released from a series of equally spaced lateral positions in 
the midplane (z  = 0) of the tunnel and upstream of the topographies. Since the 
vertical velocity in the midplane is zero, the streaklines so formed depict the 
streamlines in that plane. Since the lowest-order motion is geostrophic, these 
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streamlines are representative of the horizontal motion throughout the depth 
of the fluid. 

With the present experimental apparatus it is not possible to obtain the 
combination of slow enough free-stream flows and large enough rotation rates 
so that the linear theory is applicable, i.e. so that Ro < E). It is possible, however, 
to experiment in the range of applicability of the non-linear theory, i.e. Ro N E4. 
Figures 8 and 9 (plates 1 and 2 )  are photographs of experimental runs for a 
conical topography in which the requirements of the theory are seemingly met. 
The corresponding numerical solutions are included for comparison. 

The photographs are taken from above with the camera facing vertically 
downward. The cone attached to the upper bounding surface is transparent 
while the one on the lower surface is fabricated from white Plexiglas in order 
to provide a good background for photography. The cone system is the dark 
circular region in the central portion of the photographs and the grid spacing 
is 2-54 cm. The lateral walls of the tunnel are approximately 17.5 cm from the 
centre of the obstacle. The flow patterns are apparently unaffected by these side 
walls. The flow direction is from left to right and the rotation is counterclockwise. 

Note, as discussed above, that the upstream flow on average is at a alight 
angle to the channel axis. The free-stream flow in the numerical runs on the 
other hand is parallel to the grid lines. Thus one must rotate the experimental 
runs slightly in order to compare them with the numerical results. This correction 
is minor, however, and is ignored in the following. Owing to experimental diffi- 
culties, the streamline spacing is not identical to that in the numerical runs. Note 
also that the experimental spacing is not uniform. 

With the above in mind it is evident from both figures 8 and 9 that there is 
good agreement between theory and experiment. Specifically one should note 
the following. (i) In  the upper portions of an imaginary cylinder circumscribing 
the cone, the fluid velocities are larger than those occurring in the free stream. 
In  the lower regions, expecially in the third quadrant, the velocities are smaller 
than the free stream. (ii) Fluid is transported in an asymmetric fashion through 
the circumscribing cylinder; i.e. more fluid enters through that portion of 
the cylinder in the second quadrant than does through the third, while corre- 
spondingly more leaves through the fourth than through the first. (iii) The right- 
ward shift, facing downstream, in the lateral positions of the streamlines passing 
over the cone is noted in both the experiments and the numerical runs. The 
experimental shifts, however, are slightly larger than those predicted by the 
numerical solutions. (iv) One quantitative comparison that can be made is that 
of the predicted, V,, and measured, V,, average speed through an imaginary 
circumscribing cylinder. By definition, V is the dimensionless upstream separa- 
tion distance between the two outermost streamlines tangent to the cylinder. 
From figures 8 and 9 one obtains 

V, = 0.96k 0.03, V, = 0.97 (figure 8), 

V, = 0.81 & 0.03, V, = 0.81 (figure 9), 

respectively. Thus the quantitative agreement, at least in this respect, is quite 
good. 
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One should recall that the lowest-order theory contains errors of the order 
of the Rossby number. This may account for some of the minor discrepancies 
between theory and experiment noted in figures 8 and 9. It should also be 
emphasized that the various experimental errors, as, for example, shear in the 
free-stream flow , improper entrance and exit conditions, inaccuracies in fabrica- 
tion and mounting of the models, observational errors, and non-neutrally- 
buoyant tracer effects may also lead to discrepancies. 

Another series of experiments was conducted using a conical obstacle of large 
slope, i.e. one for which h/D - Eo. Although the theory is limited to shallow 
topographies (i.e. h/D N E i ) ,  the purpose here was to determine whether the 
theory will give reasonable predictions for topographies of large slope. As an 
example, an experimental streamline pattern and the corresponding numerical 
run for such a topography are shown in figure 10 (plate 3). Quite obviously, these 
flow patterns agree quite well, and exhibit the same qualitative characteristics 
as those just delineated. The corresponding average speeds are given by 
V' = 0.70 ~fr 0.03 and V, = 0.79. Thus the average speed predicted numerically 
is about 13% larger than that obtained experimentally. That there is some 
quantitative disagreement should of course be expected since the parameter 
restrictions of the theory are not rigorously met. Nevertheless, the overall agree- 
ment suggests that the theory may be satisfactorily extended to finite amplitude 
topographies. 
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( b )  
FIGURE 8. Streamline patterns for a conical topography, Ro = 4.0 x E = 3.0 x 10-4, 

HID = 0.375 and h/D = 6.25 x (a )  Experiment. (b)  Numerical solution. 

VAZIRI AND BOYER (Fucing p.  96) 
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FIGURE 9. Same as figure 8 except for E = 1.0 x 
( a )  Experiment. ( b )  Numerical solution. 

VAZIRI AND BOYER 

Plate 2 
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FIGURE 10. Streamline patterns for a conical topography of large amplitude. Ro = 6.0 x 
E = 4.0 x HID = 0.375 and h/D = 0.3. (a )  Experiment. ( 6 )  Numerical solution. 
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